Sensorineural Acuity Level (SAL): Ear Specific Bone Conduction in the Masking Dilemma

James W. Hall III, Ph.D.
Clinical Professor and Chief
Division of Audiology
Department of Communicative Disorders
College of Public Health & Health Professions
University of Florida
Gainesville, FL 32610
Jhall@phhp.ufl.edu

ANATOMY OF THE HUMAN EAR

The Masking Dilemma: Clinical Entities Associated with Bilateral Conductive Hearing Loss

- Aural atresia
- □ Otosclerosis/fixation of the ossicular chain
- Otitis media
- Discontinuity of the ossicular chain

THE MASKING DILEMMA: When Enough Masking is Too Much Masking

The Hood Plateau Method for Effective Masking: Not a solution for the dreaded masking dilemma

The SAL Technique: Selected References

- Rainville MJ. Nouvelle methode d'assourdissement pour le releve des courbes de conduction osseuse. *J de Français Oto-Laryngologie 4:* 1955
- □ Jerger J & Tillman T. A new method for the clinical determination of sensori-neural acuity level (SAL). *Arch Otolaryngol 71:* 1960
- Keys JW & Milburn B. The sensorineural acuity level (SAL) technique. Arch Otolaryngol 73: 1961
- □ Tillman TW. Clinical applicability of the SAL test. *Arch Otolaryngol 78:* 1963
- Burke KS, Creston JE, Marsh AJ & Shutts RE. Variability of threshold shift in SAL technique. *Arch Otolaryngol 80:* 1964
- □ Jerger J & Jerger S. Critical evaluation of SAL audiometry. J Speech Hear Res 8: 1965

The SAL Technique: Step-by-Step (1)

- Equipment
 - audiometer with capability to present narrow band noise signal via bone conduction
 - insert earphones (Etymotic Research ER-3)
 - bone oscillator dedicated for SAL procedure
 - adjustable headband for forehead bone oscillator placement
- Normative data collection
 - 10 normal hearing subjects
 - determine air conduction thresholds in quiet for each ear
 - determine air conduction thresholds with maximum masking presented via bone conduction
 - calculate average normal "shift" in air conduction thresholds from quiet to bone/noise condition (usually 55 to 60 dB)

TDH (39, 49, 59) Earphones: Outdated and Outperformed (by insert earphones)

ER-3A Insert Earphones

A Few of the Many Advantages of Insert (ER-3A) Earphones vs. Supra-Aural Earphones

- General
 - increased inter-aural attenuation
 - increased ambient noise attenuation
 - smoother frequency response
 - elimination of ear canal collapse
 - increased patient comfort
 - improved aural hygiene (disposable after single use)
 - more precise placement (increased reliability)
- ABR specifically
 - reduced transducer ringing
 - reduced stimulus artifact (with separation of transducer from inverting electrode)
 - can be adapted to use with TIPtrodes

Conventional Bone Conduction Audiometry: Thresholds by BC and Masking by AC

SAL Set Up

The SAL Technique: Step-by-Step (2)

- Clinical procedure
 - place insert earphones
 - place bone oscillator with adjustable headband
 - determine air conduction thresholds in quiet for each ear
 - determine air conduction thresholds with maximum masking presented via bone conduction
 - calculate patient's "shift" from air conduction thresholds in quiet to the bone conducted noise condition
 - Subtract patient's shift (in dB) from air conduction thresholds in quiet (for each frequency and/or speech reception threshold
 - Estimated bone conduction hearing thresholds = air conduction thresholds in quiet – shift produced by bone conduction noise

Example of SAL in Normal Hearing

Example of SAL in Sensory Hearing Loss

Example of SAL in Conductive Hearing Loss

THE MASKING DILEMMA: Solved by SAL

James Jerger "Father of Diagnostic Audiology"

